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Abstract—In recent years, robotic applications have entered
various aspects of our lives, including health care and educa-
tional services. These domains require long-term Human-Robot
Interaction (HRI), in which trust and mutual adaptation is
established and maintained through a positive social relationship
between the robot and the user. Such social bond relies on
the perceived competence of the robot on the social-emotional
dimension. However, because of technical limitations and user
heterogeneity, current HRI is far from error-free, especially when
the system leaves controlled lab environments and is applied to
natural, everyday environments.

To better understand the impact of errors in HRI and effective
strategies to handle such impact, we propose to classify errors
in HRI into two categories: performance errors which degrade
the user’s perception of the robot’s intelligence and capability
in achieving a task, and social errors which degrade the user’s
perception of the robot’s social skills and their relationship
with the robot. We focus on social errors in HRI and propose
an operational definition to it. We argue that by addressing
social errors in HRI, we can leverage them into opportunities
for improving the socio-affective competence of HRI systems.
Our work will contribute to identifying effective error handling
strategies which lead to more personalized, adaptive, and socially
acceptable interaction experiences in long-term HRI.

Index Terms—Affective computing, social robotics, human-
robot interaction, social norms, socio-affective competence, per-
sonlization, long-term HRI

I. INTRODUCTION

With recent technical advances, we have witnessed signif-
icant growth in the application of Artificial Intelligence (AI)
in various domains of our society, such as educational or
medical applications (see [1], [2] for reviews). Because of
the importance of emotions in human cognition and com-
munication [3], it is inevitable for AI researchers to take
emotions into account, which led to the establishment of the
research field Affective Computing [4]. The term Affective here
refers to aspects of cognition relating to, resulting from, or
influenced by human emotions, and Affective Computing aims
at developing emotion-aware technologies.

The majority of current Affective Computing studies have
been focused on automatic emotion recognition using vari-
ous Machine Learning approaches. However, there remains
considerable gap between performance of automatic emotion
recognition models and human performance. Moreover, when
applying such emotion recognition models trained on lab-
collected databases to a more natural and spontaneous sce-
nario, performance of the emotion recognition model poten-

tially worsens (see [5], [6] for reviews). Beyond emotion
recognition, identifying and expressing appropriate reactions
to the recognized emotions is also vital for realizing emotion-
aware interactions, and it remains an unsolved topic in Affec-
tive Computing [7].

Even with the limited performance of current emotion
recognition and interaction functions, emotion-aware Human-
Robot Interaction (HRI) has been found to foster and enhance
human-robot relationship and leads to more personalized
and adaptive interaction experiences in various studies [8]–
[10]. Moreover, emotional responsiveness and interpersonal
warmth are key factors influencing people’s perception of the
robot [11] and the outcome of HRI applications. For example,
in senior care and healthy aging domain, HRI designs which
incorporate social-emotional aspects in the interaction have
been shown to improve the health outcomes by encouraging
positive moods and reducing loneliness felt by the users [12].
In collaborative HRI and human-robot teamwork, the socio-
affective competence of the robot can largely influence peo-
ple’s trust towards the robot, which is critical to human’s
decision-making and willingness to cooperate, especially in
uncertain or risky situations [13]. In long-term and situated
HRI scenarios where the effects of novelty reduce over
time [14], such as home assistant robots [15], perceived socio-
affective competence of the robot is key to establishing a social
relationship between the user and the robot [16], [17].

HRI has been shown to activate emotional reactions and
psychological mechanisms in the user comparable to human-
human interactions [18]. Thus, there have been growing stud-
ies in utilizing HRI for mental health care. For example, social
robots have been used to help children with autism spectrum
disorders to understand social cues and practice interpersonal
interactions, which benefits their social inclusion and quality
of life (see [19], [20] for reviews). Similarly, the assistance
of HRI in elderly care has also provided valuable support
to the basic social-emotional needs of the elderly citizens
(see [12], [21] for reviews). Because of the known benefits
of social relationships, such as reducing morbidity [22] and
mortality [23], HRI systems which can establish and maintain
a social relationship with the user or encourage the user to be
involved in social relationships with other people have great
potentials in health and well-being applications.

With current social-emotional interaction functions of HRI
far behind human-level performance, errors are inevitable



during the interaction. Such errors may have significant impact
on the user’s perception of the robot and the HRI. However,
error handling is yet to be fully understood in current HRI
studies, especially regarding errors on the social-emotional di-
mension of HRI. Previous research on errors in HRI have been
focused on performance errors in the functional components
of the robot, such as navigation [24]. However, violation of
social norms was shown to cause changes in behavioral and
neural reactions in human studies [25]. Moreover, previous
Psychology studies have found that compliance and adaptation
to mutually agreed social norms is essential to social bonding
and establishing relationships [26]. These findings suggest that
social errors made by the robot can have significant influence
on the user’s perception of the robot and the interaction.
Therefore, understanding the influence of social errors will
be a key to advance current HRI research, especially in
long-term interaction scenarios where a positive human-robot
relationship is desired, such as elderly care. This motivates us
to bridge the gap in current HRI research by formally defining
social errors in HRI, and providing a systematic analysis on
key attributes and impact of such errors.

Moreover, errors are opportunities for improvement. For
example, a recent study on learning-based approach to hand-
eye coordination for robotic grasping has found that more re-
liable and effective grasping can be learned through correcting
mistakes [27]. Therefore, by addressing social errors in HRI,
it is reasonable to believe that we can identify effective error
handling strategies which lead to more personalized, adaptive,
and socially acceptable HRI. This is crucial for achieving
objective outcomes of HRI applications, such as better study
outcomes in educational applications, more humane health-
care, and more effective human-robot collaborative problem
solving. Our study will contribute to current understandings
of the social-emotional aspects of HRI and serve as a founda-
tion for advancing socio-affective competence of current HRI
systems.

II. SOCIAL ERRORS AND PERFORMANCE ERRORS IN HRI
We classify errors in HRI into two types with the following

operational definitions:
• Performance errors are errors which degrade the user’s

perception of the robot’s intelligence and competence in
achieving a task, such as failure to register a spoken
command given by the user in a noisy environment; and

• Social errors are errors which violate social norms
and degrade the user’s perception of the robot’s socio-
affective competence and their relationship with the robot,
such as interrupting the user at an inappropriate time
during a conversation.

A social error may be caused by technical failures, such as
delayed dialogue responses, or by imperfect design of the
social-emotional interaction functions of the HRI system, such
as a rule-based emotion interaction model not addressing
individual variances. An error scenario can be a mix of
performance error and social error. For example, a robot not
able to register a spoken command repeatedly may irritate the

user and result in abortion of the interaction. In this study, we
focus on understanding the impact of these errors, rather than
their causes. Note that social errors are context-dependent.
The same HRI scenario can be perceived differently and cause
entirely different impact due to individual variances, cultural
differences, mental health status, and various contextual fac-
tors. Our discussion of social errors in HRI will be situated
under these environmental and contextual factors.

The main research question we address here is how to
systematically analyze social errors in HRI. Our hypothesis is
that we can develop a taxonomy of social errors applicable
to HRI based on psychology and social cognition theories
of human interpersonal interactions, and this taxonomy can
guide systematic analysis of the impact of social errors on
the perceived socio-affective competence of the robot and the
social relationship between the robot and its human user.

Various definitions of socio-affective competence and social
relationship exist in the literature of psychology, psychiatry,
social science, and economy. In this study, we adopt the
definition of socio-affective competence as the ability to
successfully conduct social interactions, which depends on
the awareness and identification of social-emotional cues, the
ability to process such cues, and the ability to decide on
and express a normative response to these cues [28], [29].
We adopt the definition of social relationship as a connection
between a person and another entity, which represents the
person’s perception of the availability or adequacy of resources
provided by the other entity, and results in interdependency of
their social behaviors [30], [31].

III. EXISTING TAXONOMIES OF ERRORS IN HRI

Most previous research on human’s perception of errors in
HRI did not distinguish between performance errors and social
errors. For example, a recent study listed a set of scenarios
in which a domestic service robot has erratic behaviors, and
collected ratings on people’s perception of severity of these
errors [32]. These scenarios are a mix of performance errors
and social errors by our definition, and there were both types
of errors being perceived as severe. To better understand errors
in HRI, several taxonomies of errors have been proposed
in previous studies. These taxonomies described errors using
attributes include functional severity, social severity, relevance,
frequency, condition, and symptoms [33]:

• Laprie [34] classified errors into two types by severity:
benign errors (consequences of errors are comparable
to the benefits of the service), and catastrophic errors
(consequences of errors have a higher cost by one or
more orders of magnitude than the benefits).

• Ross et al. [35] classified errors into four types by
recoverability: anticipated errors (the robot can backtrack
through the original plan to achieve the original goal
through an alternate action sequence), exceptional errors
(the original plan cannot cope with the failure, but with
re-planning the original goal can still be achieved), un-
recoverable errors (the original goal cannot be achieved



either through backtracking or by re-planning), and so-
cially recoverable errors (the robot can continue on with
the original plan with appropriate assistances from its
environment).

• Carlson and Murphy [36] classified errors into physical
errors and human errors first, then further classified phys-
ical errors by severity and recoverability, and classified
human errors as design errors and interaction errors.

• Steinbauer [37] classified errors into four types: in-
teraction errors, algorithm errors, software errors, and
hardware errors.

• Brooks [38] classified errors into two types: communica-
tion errors, and processing errors.

The most closely related HRI error taxonomy is the work
of Giuliani et al. [39]. They analyzed user behaviors during
four error situations in multiple HRI studies, namely long di-
alogue pauses, repetitions in the dialogue, misunderstandings,
and complete abruption of the interaction. Human annotators
classified the errors into technical failures and violations of
social norms. They defined social norm violation as a deviation
from the social script or the usage of the wrong social signals.
In particular, they studied violations of social norms as the
robot executing interaction steps at the wrong time, or showing
unusual social signals. They collected manual annotations of
five types of user actions in the HRI sessions when an error
situation occurs, as listed below:

• Spoken sentence types: task-related sentences, questions,
statements, laugh, and correction.

• Head movements: the participant looks at the robot, at a
group member, into a direction, or at the experimenter;
nodding, shaking, or tilting the head.

• Facial expressions: smile, raise eyebrows, grimace.
• Body movements: leaning towards or away from the

robot, moving towards or away from the robot, and
change of posture.

• Hand gestures: self-touching, manipulating an object, and
pointing.

In their analyses, Giuliani et al. compared the average number
of occurrences of each action in an interaction session labeled
as containing social norm violation or technical failure. They
further compared different interaction settings, namely the
experimenter being visible or not, and single user vs. group
interactions. They found different user behavioral patterns
when different types of error occurred. This supports our
claim to distinguish social errors and performance errors
in HRI. However, Giuliani et al. focused on visual-based
behavioral analysis. To better understand the impact of errors
in HRI, we are motivated to conduct more detailed user
analyses. For example, collecting self-evaluations from the
user regarding their perception of the robot when errors occur,
or conducting quantitative studies to measure the impact of
social errors on the user’s trust towards the robot. Moreover,
only limited, dialogue-oriented error scenarios were studied by
Giuliani et al. We plan to extend our study of errors in HRI
to beyond dialogue-based interaction scenarios.

IV. FUTURE DIRECTIONS

Being a work-in-progress, in the current stage, we are
reviewing literatures to design the taxonomy of social errors
in HRI. In particular, we are reviewing psychological theories
of emotions, empathy, socio-affective competence, and social
norms. We are also reviewing current HRI research relevant
to our study, including human perception of HRI errors, and
adaptation and personalization in long-term HRI. Based on our
reviews, we will propose a taxonomy of social errors in HRI,
which reflects the major attributes of socio-affective compe-
tence in interpersonal interactions. Following the taxonomy,
we will design HRI scenarios addressing each attribute of
social errors.

In the experimental stage, we will first conduct crowd-
sourced surveys to analyze human perception of the designed
HRI scenarios. This allows us to gather initial assessments
on human perception of social errors in HRI. Moreover, it
provides evidences for us to refine our HRI scenario designs,
and identify any potential ethical concerns.

After these simulation studies, we will implement the HRI
sessions using a Pepper robot [40] and conduct HRI exper-
iments. For complex HRI scenarios or error-free conditions,
the Wizard-of-Oz approach will be used where the robot is
remotely controlled by a hidden human operator. The HRI
experiments will include both short-term, single-session inter-
actions, and long-term, longitudinal interactions. For example,
placing the robot at a reception desk where it carries out basic
receptionist duties serving both first-time visitors and regular
visitors, such as answering questions or delivering mails. The
interaction sessions will be designed to examine the impact
of different types of social errors addressing each attribute
of human perception of socio-affective competence, such as
accuracy of the emotion recognition function of the robot.

In short-term HRI experiments, the participants will answer
questionnaires before and after the experiments reflecting their
perception of the robot and the HRI session. We will also
annotate quantitative measurements, such as task success rate
or engagement level of the participants during the HRI session.
The interaction sessions will be recorded for detailed analysis
of the behaviors of participants, such as changes in their
gaze or speech when social errors occur. In long-term HRI
experiments, we will examine the efficacy of failure recovery
strategies and their impacts on the personalization of HRI and
the perceived social relationship between the participants and
the robot. For example, requesting user input when the robot
is unable to recognize the meaning of a facial expression of
the person, and applying the information learned in future
interaction sessions with this person. We will examine how
such a personalized and adaptive HRI system influences its
user’s perceptions and behaviors with both quantitative and
qualitative analysis. For example, having the user and the robot
collaborating in the same task, such as map navigation, at
different stages of the longitudinal HRI.

Our systematic analysis on the impact of social errors in
HRI will serve as the foundation for developing personal,



adaptive, and socially-acceptable long-term HRI applications.
More importantly, we hope our work will inspire and facilitate
discussion in the HRI research community regarding, but not
limited, to the following topics:

• What are the social-emotional impacts of errors in short-
term and longitudinal HRI?

• Instead of viewing errors as destructive events that should
be eliminated, do they possess any information that can
be utilized as well?

• Can we achieve personalized and adaptive HRI by ad-
dressing social errors in HRI?
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